Operator geometric stable laws

نویسندگان

  • Tomasz J. Kozubowski
  • Mark M. Meerschaert
  • Anna K. Panorska
  • Hans-Peter Scheffler
چکیده

Operator geometric stable laws are the weak limits of operator normed and centered geometric random sums of independent, identically distributed random vectors. They generalize operator stable laws and geometric stable laws. In this work we characterize operator geometric stable distributions, their divisibility and domains of attraction, and present their application to finance. Operator geometric stable laws are useful for modeling financial portfolios where the cumulative price change vectors are sums of a random number of small random shocks with heavy tails, and each component has a different tail index. r 2003 Elsevier Inc. All rights reserved. AMS 2000 subject classifications: 60E07; 60F05; 60G50; 62H05; 62P05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Operator Ν-stable Laws

Operator stable laws are the limits of operator normed and centered sums of independent, identically distributed random vectors. The operator ν-stable laws are the analogous limit distributions for randomized sums. In this paper we characterize operator ν-stable laws and their domains of attraction. We also discuss several applications, including the scaling limits of continuous time random wal...

متن کامل

A bivariate infinitely divisible distribution with exponential and Mittag–Leffler marginals

We introduce a bivariate distribution supported on the first quadrant with exponential, and heavy tailed Mittag–Leffer, marginal distributions. Although this distribution belongs to the class of geometric operator stable laws, it is a rather special case that does not follow their general theory. Our results include the joint density and distribution function, Laplace transform, conditional dis...

متن کامل

Convex and star-shaped sets associated with stable distributions

It is known that each symmetric stable distribution in Rd is related to a norm on Rd that makes Rd embeddable in Lp([0, 1]). In case of a multivariate Cauchy distribution the unit ball in this norm corresponds is the polar set to a convex set in Rd called a zonoid. This work exploits most recent advances in convex geometry in order to come up with new probabilistic results for multivariate stab...

متن کامل

Convex and star-shaped sets associated with multivariate stable distributions, I: Moments and densities

It is known that each symmetric stable distribution in Rd is related to a norm on Rd that makes Rd embeddable in Lp([0, 1]). In case of a multivariate Cauchy distribution the unit ball in this norm is the polar set to a convex set in Rd called a zonoid. This work interprets general stable laws using convex or star-shaped sets and exploits recent advances in convex geometry in order to come up w...

متن کامل

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002